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Validation of the Thermal Equilibrium Assumption
in Periodic Natural Convection in Porous Domains
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The validity of the local thermal equilibrium assumption in the periodic free
convection channel flow is investigated analytically. Two cases are consid-
ered where in the first case transverse conduction in the solid domain is
included while in the second case transverse conduction in the fluid domain
is included. The periodic disturbance in the free convection flow is due to
a periodic thermal disturbance imposed on the channel walls. The Darcy–
Brinkman model is used to model the flow inside the porous domain. It is
found that four dimensionless parameters control the local thermal equilib-
rium assumption in the first case and five parameters control the local equi-
librium assumption in the second case. The criteria that secure the validity
of the local thermal equilibrium assumption are derived.

KEY WORDS: Darcy–Brinkman model; periodic natural convection; porous
domain; thermal equilibrium assumption; validation criteria.

1. INTRODUCTION

During the last few decades, convection heat transfer in porous media has
been extensively investigated. Two models are adopted to describe the ther-
mal behavior of porous systems. These are the so-called single-phase and
two-phase models [1]. The main distinction between these models is that
local thermal equilibrium is assumed in the single-phase model while no
such assumption is made in the two-phase model. Therefore, the single-
phase model yields only one energy equation, whereas in the two-phase
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model there are two governing energy equations. In the two-phase model,
each energy equation contains a fluid-to-solid heat transfer term.

The concept of local thermal equilibrium has been widely used
in modeling transport phenomena in porous media [2–4]. Very limited
investigations in the literature have included the local thermal equilib-
rium assumption [5–9]. Comparatively, fewer investigations have presented
a comparison between both models [10–13]. All previous investigations
are related only to certain cases and applications and no general result
has been determined. There are many models with the conservation of
momentum equation used to describe the fluid flow in porous medium: the
Darcian model [6, 7, 10, 14] and the non-Darcian extensions models [2, 3,
7]. Both of these models are widely used in the literature.

The local thermal equilibrium assumption in transient forced convec-
tion porous channel flow has been investigated analytically [5, 10]. This is
accomplished by focusing on the operating conditions required for both
the solid and fluid domains to approximately attain the same temperature,
and as a result, the local thermal equilibrium assumption is tested and
confirmed.

The aim of the present study is to investigate the local thermal equi-
librium assumption in the periodic free convection flow in a vertical open-
ended porous channel. The fluctuations in the thermal and hydrodynamic
behaviors of the problem are due to the periodic thermal disturbance
imposed on the channel walls. The Darcy–Brinkman model is used to
describe the hydrodynamic behavior of the free convection channel flow.

2. ANALYSIS

Consider the problem of periodic free convection fluid flow in an
open-ended vertical porous channel. The fluctuations in the hydrodynamic
and thermal behaviors of the channel are due to the harmonic fluctuations
in the wall temperature of the channel. Referring to Fig. 1 and using the
dimensionless parameters given in the nomenclature, the momentum and
energy equations are given as [7]

Case I: Neglecting conduction in the fluid domain:

−Ca

∂U

∂τ
+ ∂2U

∂ Y 2
− U

Da
− θf =0 (1)

∂θs

∂τ
= ∂2θs

∂Y 2
+H

(
θf − θs

)
(2)
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L

Fig. 1. Schematic diagram of the problem under consideration.

∂θf

∂τ
=CH

(
θs − θf

)
(3)

Case II: Neglecting conduction in the solid domain:

−Ca

∂U

∂τ
+ ∂2U

∂Y 2
− U

Da
− θf =0 (4)

∂θs

∂τ
=H

(
θf − θs

)
(5)

α
∂θf

∂τ
= ∂2θf

∂Y 2
+Hrk

(
θs − θf

)
(6)

where U =U (τ,Y ) , θf = θf (τ, Y ) , θs = θs (τ, Y )

Equations (1)–(3) or (4)–(6) assume the following initial and bound-
ary conditions:

U (0, Y )= θf (0, Y )= θs (0, Y )=0.0

∂U

∂Y
(τ,0)= ∂θf

∂Y
(τ,0)= ∂θs

∂Y
(τ,0)=0.0 (7)

U (τ,1)=0.0
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θf (τ,1)= θs (τ,1)=β sin(ωτ)=β Im(eiωτ )

In Eqs. (1)–(7), subscripts f and s refer to the fluid and solid domains,
respectively, β stands for the relative amplitude of oscillations, and “Im”
stands for the imaginary part of the term inside the parentheses. Also,
axial thermal diffusion is not included in Eqs. (2) and (3) or (5) and (6).
Axial thermal diffusion is insignificant compared to transverse diffusion
and may be neglected in a channel having a low width-to-length aspect
ratio. Also, axial thermal diffusion may be neglected for gases. The focus
in the present study is on the main features of the local thermal equilib-
rium criterion, which are not affected by excluding thermal diffusion and
thermal dispersion effects.

As mentioned previously, transverse conduction is neglected from the
fluid energy equation for Case I and from the solid matrix energy equa-
tion for Case II. There are many physical and mathematical justifications
to do so. There are many physical applications, which involve low thermal
conductivity fluids (such as gases) which flow into a high thermal conduc-
tivity porous solid matrix. In these applications, thermal diffusion (con-
duction) in the transverse direction of the fluid domain may be neglected,
especially when the porosity (void fraction) is small. A small void fraction
implies that the low thermal conductivity fluid almost occupies discrete
regions which are not in good thermal contact (because there is very lit-
tle fluid due to the small void fraction) and as a result, transverse thermal
conduction in the fluid domain is insignificant. This is true, especially in
channels that have a relatively large width (L) since transverse conduction
is proportional to (1/L2). On the other hand, transverse conduction may
be neglected in the solid domain (as in Case II) in applications involving
solids with a low thermal conductivity especially when the void fraction
is large and in channels having a large width. In these applications, the
solid domain consists of discrete low thermal conductivity regions, which
are not in good thermal contact. In these applications, the transverse con-
duction in the solid domain is insignificant.

The main objective of the present work is to investigate the conditions
for which the use of the two-temperature model (non-local equilibrium) is
a necessity. Neglecting transverse thermal diffusion from the fluid or solid
domains will not alter the main finding of the work. Also, consideration of
the two separate cases (I and II) makes it possible to distinguish between
the separate effects of transverse conduction in solid and fluid domains.

Another physical justification for neglecting transverse conduction
in one of the two domains relies on the fact that neglecting transverse
conduction presents the most severe conditions under which the use of the
two-temperature model is a necessity. Consider a certain location that has
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a large difference between the hot solid and cold fluid temperatures. This
high temperature difference implies that the use of the two-temperature
model is a necessity. Now, allowing for the transverse conduction to take
place within the solid domain will draw more thermal energy from the
solid domain to other colder locations. This lowers the temperature differ-
ence between the fluid and solid domains and makes the conditions less
severe for the two-temperature model. In other words, one may think that
the use of the one-temperature model (local thermal equilibrium model)
is possible but this is not always the case, especially when taking into
account the fact that the two-temperature model is more general and accu-
rate than the one-temperature model.

Also, we have a mathematical justification to consider two sep-
arate cases. If transverse conduction is considered simultaneously in
both domains, we will get two coupled second-order differential equa-
tions. Decoupling these two differential equations yields a fourth-order
differential equation with complex coefficients. The solution of such an
equation is presented in terms of four roots obtained from the charac-
teristic equation corresponding to this differential equation. Finding an
analytical, closed-form solution in this case is not possible because it
is difficult to get closed-form expressions for the four roots since they
are expressed in the complex domain. In general, there is no analytical
method that gives the four roots of a fourth-order equation in closed
form.

It is clear from the momentum equations, Eqs. (1) and (4), that
what is causing the free (natural) convection flow is the fluid tempera-
ture θf and not ∂θf

∂Y
. The fluctuating heating source heats both fluid and

solid domains through the wall, and then convective currents are initiated
within the heated fluid due to the buoyancy effects. Due to the thermally
fully developed assumption, the enthalpy term (U ∂θ

∂X
+ V ∂θ

∂Y
) in the fluid

energy equation is neglected. This implies that the momentum equation
does not affect the energy equation but the energy equation has a strong
effect on the momentum equation. A similar case is considered by Bejan
[15] but for steady free convection in a clear (non-porous) domain using
the one-temperature model.

Also, it is clear from Eqs. (1) and (4) that the Brinkman term is
added to extend the Darcy model. Including the Brinkman term improves
the predictions of the Darcy model especially near the walls and within
the hydrodynamic boundary layer. In this case, the model is able to sat-
isfy the velocity no-slip condition at the wall.



1638 Khadrawi, Tahat, and Al-Nimr

3. SOLUTION METHODOLOGY

The harmonic fluctuations in the imposed wall temperatures are the
only source for the disturbances in the thermal and hydrodynamic behav-
iors of the channel flow. The nature of these harmonic fluctuations implies
that U, θf , and θs vary in the form:

U(τ,Y )= Im
{
W (Y) eiωτ

}

θf (τ, Y )= Im
{
Vf (Y ) eiωτ

}

θs(τ, Y )= Im
{
Vs (Y ) eiωτ

}
(8)

Under this assumption, the governing equations are reduced to

• Case I:

−Ca iωW + ∂2W

∂Y 2
− W

Da
=Vf (9)

iω Vs = ∂2Vs

∂Y 2
+H(Vf −Vs) (10)

iω Vf =C H(Vs −Vf ) (11)

• Case II:

−Ca iωW + ∂2W

∂Y 2
− W

Da
=Vf (12)

iω Vs =H(Vf −Vs) (13)

α iωVf = ∂2Vf

∂Y 2
+ rkH(Vs −Vf ) (14)

The solutions for these governing equations are given as

• Case I:

Vs (Y )=β
coshλY

coshλ
(15)

Vf (Y )=γVs (Y ) (16)
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W (Y)=F cosh
(

Y√
Da

)
+βγ

cosh λY

(cosh λ)
(
λ2 −1/Da

) (17)

where

λ=
√

H + iω−Hγ , γ = CH

iω+CH
,

F = −βγ
(
λ2 −1/Da

)
cosh(1

√
Da)

(18)

• Case II:

Vf (Y )=β
coshλY

cosh λ
(19)

Vs (Y )=γ Vf (Y ) (20)

W (Y)=F cosh
(

Y√
Da

)
+β

cosh λY

(cosh λ)
(
λ2 −1/Da

) (21)

where

λ=
√

H rk −H γ rk + iωα, γ = H

H + iω
,

F = −β
(
λ2 −1/Da

)
cosh(1/

√
Da)

(22)

The final solutions for U, θf and θs of both cases may be obtained by
inserting Eqs. (15) to (17) into Eq. (8) for Case I and inserting Eqs. (19)
to (21) into Eq. (8) for Case II. The final step in the solution is to esti-
mate the imaginary part of W(y)eı́ωτ , Vf (y)eı́ωτ , and Vs(y)eı́ωτ . This may
be accomplished using any of the commercial packages such as MatLab
or Mathematica.

The local thermal equilibrium criterion comparing Vf and Vs in Eqs.
(16) and (20) reveals that the conditions of thermal equilibrium should
hold if the following criterion is satisfied:

γ ≈1 (23)

This implies, within 5% error, that the criteria for local equilibrium are
reduced to

• Case I:
ω

CH
<0.05 (24)
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• Case II:

ω

H
<0.05 (25)

The criteria, Eqs. (24) and (25), imply that an increase of the fre-
quency of the fluctuations in the wall temperature restricts the validity
of the thermal equilibrium assumption. It is obvious that the ability of
the solid matrix to sense the thermal fluctuations in the fluid tempera-
ture becomes weak as the frequency of these fluctuations increases. Also,
the validity of the thermal equilibrium assumption is demonstrated as
the volumetric Nusselt number increases. As the convective heat trans-
fer between the fluid and solid domains increases, the time required by
the solid domain to attain the fluid temperature decreases. Also, it is
clear from the criterion in Eq. (24) that for Case I, the thermal equi-
librium assumption is established for large values of C. In Case I, the
transverse conduction in the fluid domain is neglected which implies that
the effect of the thermal disturbance is carried into the channel directly
through the solid matrix and then the solid matrix transfers it to the fluid
domain through the volumetric convective heat transfer coefficient. Now,
very large values of C imply that the fluid domain has low total ther-
mal capacity ε ρf cf and the solid domain has high total thermal capacity
(1− ε) ρscs . This means that the solid domain, which carries the effect of
the thermal disturbance, is able to transfer a small part of its energy to
the fluid domain, which is sufficient to raise the fluid temperature so both
domains attain approximately equal temperatures. This confirms the local
thermal equilibrium assumption. On the other hand, if C is very low, this
implies that the fluid domain needs a large amount of energy to attain a
temperature similar to the solid domain. This condition needs more time
and may not be supported.

4. RESULTS AND DISCUSSION

Due to the fully developed thermal equilibrium assumption, the
momentum equation does not affect the energy equation but the energy
equation has a strong effect on the momentum equation. This implies
that all parameters appear in the momentum equations (Eqs. (1) and
(4)), i.e., Ca and Da, and do not affect the local thermal equilibrium
assumption. These two parameters have a significant effect on the channel
hydrodynamic behavior as is clear from the solutions given for U.

The effects of different parameters on the validity of the local ther-
mal equilibrium assumption are investigated in Figs. 2–11 for both Cases
I and II. Figures 2 and 3 show the effect of the volumetric H on the abso-
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lute difference between the solid and fluid temperatures |θs–θf |. As pre-
dicted, this difference decreases as H increases. An increase of H enhances
the heat transfer between the fluid and the solid matrix, and this in turn
shortens the time required to attain local thermal equilibrium. In Figs. 2
and 3 the amplitude of the thermal distribution is β = 10 and the devia-
tion between the fluid and solid matrix temperature may reach 90% of this
value at very small values of H. Also, Figs. 2 and 3 show that the maxi-
mum deviation between θs and θf occurs at different times as H changes.
This is predicted since the phase lag between θs and θf is very sensitive
to H. Figure 4 shows the effect of C on the absolute temperature differ-
ence |θs–θf | at different H. In Case I, the effect of the thermal distur-
bance is carried from the wall to the interior domain through the solid
matrix. Large values of C imply that the solid domain has higher total
thermal capacity (1− ε) ρscs as compared to the fluid one ε ρf cf . This
implies that the solid domain is able to raise the fluid domain temperature
very easily so both domains attain approximately the same temperatures.
This behavior is justified previously in the section describing the thermal
equilibrium criterion.

Figure 5 shows the effect of rk on the temperature difference for Case
II at different values of H and α. From Eq. (6) it is clear that rk has
the same effect as H on the validity of the local thermal equilibrium, but

Fig. 2. Transient behavior of the difference between
the fluid and solid temperatures at different H numbers;
Case I.
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Fig. 3. Transient behavior of the difference between the fluid and
solid temperatures at different H numbers; Case II.

Fig. 4. Effect of C on the difference between the fluid
and solid temperatures at different H numbers; Case I.
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Fig. 5. Effect of rk on the difference between the fluid and solid
temperatures at different H numbers; Case II.

the rk effect is not as strong as theH effect as will be shown later. An
increase of the coefficient of (θs − θf ) in Eq. (6) demonstrates the validity
of the local thermal equilibrium assumption. This implies that an increase
of rk will support the local thermal equilibrium assumption. It is clear
from Fig. 5 that the effect of rk on the local thermal equilibrium assump-
tion is more significant at small values of H. The effect of H and C on
the temperature difference of Case I is shown from another point of view
in Fig. 6. It is worth mentioning here that the H-axis is plotted on a log
scale. This implies that the effect of the H number on the temperature
difference is insignificant at large values of H. This is justified, since the
time required for both fluid and solid domains to attain the same tem-
perature is proportional to 1/q, where q is the convective heat transfer
between the fluid and solid domains. This convective heat transfer is pro-
portional to h which is the volumetric convective heat transfer coefficient.
As a result, the temperature difference |θs − θf | is proportional to 1/h or
to 1/H.

The effect of H on |θs − θf | at different α and rk is shown in Fig. 7
for Case II from another point of view. The behavior shown on this fig-
ure is explained previously. The effect of α on the temperature difference
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Fig. 6. Effect of H number on the difference between the fluid
and solid temperatures at different C; Case I.

Fig. 7. Effect of H number on the difference between the fluid
and solid temperatures at different rk and α; Case II.
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Fig. 8. Effect of α on the difference between the fluid and solid
temperatures at different H and rk ; Case II.

Fig. 9. Effect of β on the difference between the fluid and solid
temperatures; Case I and Case II.
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Fig. 10. Effect of ω on the difference between the fluid and solid
temperatures at different H numbers; Case I.

Fig. 11. Effect of ω on the difference between the fluid and solid
temperatures at different H numbers; Case II.
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for Case II is shown in Fig. 8. The temperature difference decreases as α

increases. The effect of α on the temperature difference is more significant
at small values of H and rk.

The effect of the amplitude of the thermal disturbance β on the tem-
perature difference is shown in Fig. 9 for Cases I and II. As predicted, the
temperature difference is linearly proportional to the amplitude β. This
is obvious since the energy equations are linear and homogeneous, and
the thermal boundary conditions are either homogeneous or linearly pro-
portional to β. As a result, it is predicted that θf and θs and the differ-
ence |θs −θf | are linearly proportional to β. The local thermal equilibrium
assumption is demonstrated in applications involving a weak thermal dis-
turbance.

The effect of the dimensionless thermal disturbance frequency ω on
the temperature difference is shown in Figs. 10 and 11 for Cases I and II,
respectively. The temperature difference |θs − θf | increases as ω increases
for both cases. The ability of one domain to sense the thermal fluctuations
carried by the other domain becomes weak as the frequency of these fluc-
tuations increases. The effect of ω on the temperature difference is more
significant at small values of H. Also, the effect of ω on the temperature
difference is less significant at large values of ω.

5. CONCLUSIONS

The Darcy–Brinkman model is used to investigate the local thermal
equilibrium assumption in the periodic free convection porous channel. It
is found that the volumetric Nusselt number, thermal conductivity ratio,
natural frequency ratio, and the amplitude have the most significant effect
on the local thermal equilibrium assumption. The local thermal equilib-
rium assumption is demonstrated for large values of the H number, ther-
mal conductivity ratio, and thermal diffusivity ratio and for small values
of amplitude and frequency of the thermal disturbance.
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NOMENCLATURE

c Specific thermal capacity
C Total thermal capacity ratio, (1− ε) csρs/

(
ερf cf

)

ca Acceleration coefficient tensor
Ca Modified acceleration coefficient tensor, caαsρf /µeff

Da Darcy number, (K∗ µeff ) /(L2 µf )

h Volumetric heat transfer coefficient
H Volumetric Nusselt number, hL2/((1− ε)ks)

k Thermal conductivity
K∗ Permeability
kf Thermal conductivity of the fluid
ks Thermal conductivity of the solid
2L Channel width
rk Thermal conductivity ratio, (1− ε) ks/

(
εkf

)

t Time
to Reference time, L2/αs

T Temperature
Tw Wall temperature
T∞ Ambient temperature
u Axial velocity
U Dimensionless axial velocity, u/uo

uo Reference velocity,
(
ρf L2 g β̄ �T

)
µeff

x Transverse coordinate
X Dimensionless transverse coordinate, x/L

y Axial coordinate
Y Dimensionless axial coordinate, y/L

Greek symbols
α Thermal diffusivity ratio, αs/αf

αf Thermal diffusivity of the fluid
αs Thermal diffusivity of the solid
β Amplitude of the thermal disturbance, Tw/(Tw −T∞)

β̄ Coefficient of thermal expansion
�T Temperature difference, Tw −T∞
ε Porosity
µf Dynamic viscosity of the fluid
µeff Effective dynamic viscosity
θ Dimensionless temperature, (T −T∞)/ (Tw −T∞)

θf Dimensionless fluid temperature,
(
Tf −T∞

)
/ (Tw −T∞)

θs Dimensionless solid temperature, (Ts −T∞)/ (Tw −T∞)

τ Dimensionless time, t/to
ω Dimensionless frequency of the thermal disturbance, ωL/αs

ω Frequency of the thermal disturbance
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